Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-468374

ABSTRACT

Current first-generation COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) that threaten to escape vaccine-mediated protection. Here we show in a stringent hamster model that immunization using prototypic spike expressed from a potent YF17D viral vector (1) provides vigorous protection against infection with ancestral virus (B lineage) and VOC Alpha (B.1.1.7), however, is insufficient to provide maximum protection against the Beta (B.1.351) variant. To improve vaccine efficacy, we created a revised vaccine candidate that carries an evolved spike antigen. Vaccination of hamsters with this updated vaccine candidate provides full protection against intranasal challenge with all four VOCs Alpha, Beta, Gamma (P.1) and Delta (B.1.617.2) resulting in complete elimination of infectious virus from the lungs and a marked improvement in lung pathology. Vaccinated hamsters did also no longer transmit the Delta variant to non-vaccinated sentinels. Hamsters immunized with our modified vaccine candidate also mounted marked neutralizing antibody responses against the recently emerged Omicron (B.1.1.529) variant, whereas the old vaccine employing prototypic spike failed to induce immunity to this antigenically distant virus. Overall, our data indicate that current first-generation COVID-19 vaccines need to be urgently updated to cover newly emerging VOCs to maintain vaccine efficacy and to impede virus spread at the community level. Significance StatementSARS-CoV-2 keeps mutating rapidly, and the ongoing COVID-19 pandemic is fueled by new variants escaping immunity induced by current first-generation vaccines. There is hence an urgent need for universal vaccines that cover variants of concern (VOC). In this paper we show that an adapted version of our vaccine candidate YF-S0* provides full protection from infection, virus transmission and disease by VOCs Alpha, Beta, Gamma and Delta, and also results in markedly increased levels of neutralizing antibodies against recently emerged Omicron VOC in a stringent hamster model. Our findings underline the necessity to update COVID-19 vaccines to curb the pandemic, providing experimental proof on how to maintain vaccine efficacy in view of an evolving SARS-CoV-2 diversity.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-433062

ABSTRACT

Within one year after its emergence, more than 108 million people contracted SARS-CoV-2 and almost 2.4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1), variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics and new spikes in excess mortality. We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 lineages in Syrian golden hamsters to assess their relative infectivity and pathogenicity in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. Overall, we established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-193045

ABSTRACT

The explosively expanding COVID-19 pandemic urges the development of safe, efficacious and fast-acting vaccines to quench the unrestrained spread of SARS-CoV-2. Several promising vaccine platforms, developed in recent years, are leveraged for a rapid emergency response to COVID-191. We employed the live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express the prefusion form of the SARS-CoV-2 Spike antigen. In mice, the vaccine candidate, tentatively named YF-S0, induces high levels of SARS-CoV-2 neutralizing antibodies and a favorable Th1 cell-mediated immune response. In a stringent hamster SARS-CoV-2 challenge model2, vaccine candidate YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose confers protection from lung disease in most vaccinated animals even within 10 days. These results warrant further development of YF-S0 as a potent SARS-CoV-2 vaccine candidate.

SELECTION OF CITATIONS
SEARCH DETAIL
...